Use the Law of Conservation of Energy to solve the following problems.

1. Physics student is dropped (don't ask why or you're next). If they reach the floor at a speed of $3.2 \mathrm{~m} / \mathrm{s}$, from what height did they fall?
2. A heavy object is dropped from a vertical height of 8.0 m . What is its speed when it hits the ground?
3. A bowling ball is dropped from the top of a building. If it hits the ground with a speed of $37.0 \mathrm{~m} / \mathrm{s}$, how tall was the building?
4. A safe is hurled down from the top of a $1.3 \times 10^{2} \mathrm{~m}$ building at a speed of $11.0 \mathrm{~m} / \mathrm{s}$. What is its velocity as it hits the ground?
5.

A box slides down a frictionless ramp. If it starts at rest, what is its speed at the bottom?
6.

A pendulum is dropped from the position shown, 0.25 m above its equilibrium position. What is the speed of the pendulum bob as it passes through its equilibrium position?
7.

A box slides down a frictionless incline as shown. If the box starts from rest, what is its speed at the bottom?

A roller coaster car starts from rest at point A . What is its speed at point C if the track is frictionless?
9. A 2.5 kg object is dropped from a height of 10.0 m above the ground. Calculate the speed of the object as it hits the ground.
10.

An 80.0 kg student running at $3.5 \mathrm{~m} / \mathrm{s}$ grabs a rope that is hanging vertically. How high will the student swing?

A pendulum is 1.20 m long. If the pendulum is pulled until it makes a 25.0° angle to the vertical, what is the speed of the pendulum bob when it passes through its equilibrium position? HINT: Determine the vertical drop of the pendulum bob first.

