1. A 80.0 kg table is pushed across the floor with a force of 500 N . If the coefficient of kinetic friction is 0.40 , what is the acceleration of the table?
2. A 0.50 kg book is pushed across a table from rest. If the book does not move until more than 3.25 N of force is applied, what is the coefficient of static friction?
3. A 150 kg refrigerator is pushed at a constant velocity across a floor. If the coefficient of kinetic friction is 0.55 , determine the applied force.
4. The coefficient of static friction between a 5.0 kg cardboard box and a tiled floor is 0.30 . The coefficient of kinetic friction between the same two surfaces is 0.23 .
a. How much force is required to move the box from rest?
b. How much force is required to move the box at a constant velocity?
5. Kody is sliding a cone on the ice with a force of 15 N . If the coefficient of friction is 0.18 and the acceleration of the cone is $1.2 \mathrm{~m} / \mathrm{s}$, what is the mass of the cone?
6. Matthew wants to push a 12.0 kg chair to his desk. The coefficient of kinetic friction is 0.45 .
a. If Matthew pushes the chair with a force of 120 N , determine the acceleration of the chair?
b. As Matthew continues to push the chair with a 120 N force, his classmate Luke applies a 45 N force in the opposite direction. What is the acceleration of the chair now?
c. Instead, Luke decides to apply a 45 N force downwards. Determine the acceleration of the chair. (Hint: be sure to determine F_{N} first)
7. A car is moving at speed of $80 \mathrm{~km} / \mathrm{h}$. If the coefficient of kinetic friction between the tires and the road is 0.80 , determine how long the car takes to stop when it slams on the brakes.
8. An NHL hockey puck weighs about 0.16 kg . It is shot from one side of the rink to the other side 60 m away. it begins travelling at a speed of $15 \mathrm{~m} / \mathrm{s}$ across the ice and hits the other side 4.5 seconds later, determine the coefficient of kinetic friction between the ice and the puck.
